Chesapeake Bay Monitoring Program

Station: Comments: RV: Miss Jana
Cruise No.: Date: Time:

Field Chief: **Station Depth:** **Lat.**

Secchi Depth: **Long.**

Weather Data - Circle Appropriate Weather Codes

<table>
<thead>
<tr>
<th>Cloud Cover</th>
<th>Precip. Type:</th>
<th>Wind Speed</th>
<th>Sea State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Clear (0-10%)</td>
<td>10 - None</td>
<td>0</td>
<td>0 - 1 Knots</td>
</tr>
<tr>
<td>1 - Partially Cloudy: 10-50%</td>
<td>11 - Drizzle</td>
<td>1</td>
<td>2 - 10 Knots</td>
</tr>
<tr>
<td>2 - Partially Cloudy: 50-90%</td>
<td>12 - Rain</td>
<td>2</td>
<td>11 - 20 Knots</td>
</tr>
<tr>
<td>3 - Overcast: >90%</td>
<td>13 - Rain Heavy</td>
<td>3</td>
<td>21 - 30 Knots</td>
</tr>
<tr>
<td>4 - Foggy</td>
<td>14 - Squally</td>
<td>4</td>
<td>31 - 40 Knots</td>
</tr>
<tr>
<td>5 - Hazy</td>
<td>15 - Frozen Precip.</td>
<td>5</td>
<td>>40 Knots</td>
</tr>
<tr>
<td>6 - Cloud (no percentage)</td>
<td>16 - Rain Snow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zooplankton Net Data

<table>
<thead>
<tr>
<th>Drop Net Volume (ML)</th>
<th>A:</th>
<th>B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net:</td>
<td>Meter Stop</td>
<td>Meter Start</td>
</tr>
<tr>
<td>A:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mesoglea Data

<table>
<thead>
<tr>
<th>Mesoglea Vol.</th>
<th>A:</th>
<th>B:</th>
<th>A:</th>
<th>B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Total)</td>
<td>ML</td>
<td>ML</td>
<td>Types/Family (Fill Out)</td>
<td>% Composition</td>
</tr>
<tr>
<td>Ctenophores (Comb-Jellies)</td>
<td></td>
<td></td>
<td>Beroe</td>
<td></td>
</tr>
<tr>
<td>Scyphozoa (Typical Jellyfish)</td>
<td></td>
<td></td>
<td>Chrysaora</td>
<td></td>
</tr>
</tbody>
</table>

Pycnocline Calculation

\[
A: \quad \text{surface conductivity} - \text{bottom conductivity} = \Delta \text{Conductivity} \\
B: \quad \Delta \text{Conductivity} = \frac{\text{Average Conductivity Change}}{2} = \text{(Pycnocline Threshold)}
\]

Definitions:

- Upper Limit: The shallowest depth where change in conductivity > the Pycnocline Threshold Upper Depth
- Lower Limit: The deepest depth where the change is conductivity < the Pycnocline Threshold Lower Depth
- Note: No Pycnocline is: 1) Pycnocline Threshold < 500 \(\mu \text{mho/cm} \), or 2) no depth interval > threshold value.
<table>
<thead>
<tr>
<th>Depth (M)</th>
<th>Temperature °C</th>
<th>Salinity</th>
<th>Sp. Conduct. (µMHO/CM)</th>
<th>DO (PPM)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initials:

Chief Scientist: ____________________________

Supervisor: _______________________________